DEPARTMENT OF ELECTRNICS \& COMMUNICATION ENGINEERING, KITSW

COURSE: U14EI 205 - BASIC ELECTRONICS ENGINEERING \quad ECE-I, Semester-II, 2015-16

ASSIGNMENT-7 HINTS \&SOLUTIONS (PART-3 -of- 3)

6. The true value of the voltage across a resistor is 80 V . However, when a $0-100 \mathrm{~V}$ meter is employed, the measurement reading obtained is 79 V . Calculate:
(i) absolute error
(ii) relative error as function of measured value
(iii) relative error as function of fsd

Solution:
Given data: True voltage $=80 \mathrm{~V}$,
Measured voltage $=79 \mathrm{~V}$
Voltmeter fsd $=100 \mathrm{~V}$
(i) Absolute error (e) $=$ Measured value- True value $=79-80=-1 \mathrm{~V}$
(ii) Relative error is \% error.

Relative error as a function of measured value $=\frac{\text { Measured value-True value }}{\text { Measured value }} \times 100 \%$

$$
=\frac{79-80}{79} \times 100 \%=-1.266 \%
$$

(iii) Relative error as a function of $\mathrm{fsd}=\frac{\text { Measured value-True value }}{\mathrm{fsd}} \times 100 \%$

$$
=\frac{79-80}{100} \times 100 \%=-1 \%
$$

7. With a neat sketch, explain the principle of permanent magnet moving coil (PMMC) instrument and discuss briefly the errors in PMMC.

$$
\begin{aligned}
& \text { Permanent Magnet Moving coil (PMMC) } \\
& \text { Instruments }
\end{aligned}
$$

\rightarrow PMMC meter is the most accurate type for d.c measurements. PMMC meters are also referred to as the d'Arsonval Movement meters.
\rightarrow The PMMC instrument is an Ammeter.
\rightarrow The following figure illustrates the constructional features

\rightarrow It consists of a rectangular coil wound round
a soft iron core stich is suspended in the field of permanent magnet.
\rightarrow The rectangular coil is mounted on α bearings so that it is free to move.
\rightarrow An Aluminium pointer is attached to the moving coil.
\rightarrow whew coil rotates, the pointer moves on a graduated scale.
\rightarrow Two serial springs are allached to the coil assembly -
ore at the top and tither at the bottom.

For deflectiontype instruments, three operating forces are required.
(i) Deflecting force
(ii) controlling force \&
(iii) Damping force.

Deflecting force:
\rightarrow When a current flows the coil, a magnetic flux is produced
\rightarrow This elatro-magnetic flux interacts 2 int the flux due to permanent magnet
\rightarrow A torque called deflecting torque is produced.
\rightarrow As a result, the coil starts rotating and along with it, the pointer moves over the scale.

let $B=$ Magnetic flux density (T) die to permanent magnet when a current I flows through a one-tusw coil,
of length (l), then the force F excested on each side of the coil is

$$
F=B I l \text { Newtons }
$$

Then total force acting on both sides of the coil of ' N ' twins

$$
F=2 B I R \cdot N
$$

The deflecting torque $T_{d}=2 B I \& N \cdot \gamma \quad(N-m)$

$$
T_{d}=B I \ln (2 r)
$$

$$
T_{d}=B I l N D . \quad D \rightarrow \text { din of coil. }
$$

$$
T_{d}=N A B I
$$

Controlling force
The controlling force in PMMC instrument is provided by spiral springs.
\rightarrow Spring material must be non-magretic to avoid any magnetic field influence on controlling force
\rightarrow springs are made of phosphor Bronze

\rightarrow when there is no current in the coil, the spring keeps the coil and the pointer at zero position
\rightarrow when current flows, the coil rotates and the springs "wind up"
\rightarrow As the coil rotates, the restoring force (torque) provided by the spiral spiral springs goes on increasing.
\rightarrow The coil and pointer stop rotating at a point where deflecting torque $\left(T_{d}\right)=$ controlling torque $\left(T_{c}\right)$

$$
B I N A=K O
$$

Here $K=$ spring constant ($\mathrm{Nm} / \mathrm{deg}$)
$\theta=$ angular deflection of the pointer (deg).

$$
\begin{aligned}
& \theta=\frac{B \operatorname{BINA}}{K} \\
\Rightarrow & \theta \propto I
\end{aligned}
$$

ie, the pointer deflection is always proportional to the coil current (I) and hence Scale is linear or uniformly divided //
damping force or Torque
\rightarrow The pointer deflects to a position where $T_{c}=T_{d}$
\rightarrow The pointer and the coil tend to oscillate for some tine before settling down at final position.
\rightarrow Lack of damping causes the pointer to oscillate

\rightarrow In PMMC instruments, the damping force is normally provided by eddy currents
\rightarrow The coilformer (core) is constructed of Aluminium, a now-m agnatic conductor.
\rightarrow Eddy currents are introduced in the coil former set up a magnetic flux that opposes the coil motion and thus damps the osullations of the coil.

Specifications:
The d'Arsonval movement (or meter) or PMMC instrument is specified in terms of ils "e current sensitivity" or full scale deflection current and the coil resistance.
\rightarrow The most sensitive d'Arsonval meter gives f.s.d with a coil current of $25 \mathrm{\mu A}$

Advantages of PMMC instruments:

1. Linear scale (the scale is uniformly divided)
2. High torque -to- weight ratio (high accuracy can be achieved)
3. Very low power consumption ($25 \mu \mathrm{~W}-200 \mu \mathrm{~W}$)
4. Free from hysteresis errors
5. Wide range of currents can be measured with the help of shunts
6. Wide range of voltages can be measured with the help of series multipliers

Disadvantages of PMMC instruments:

Suitable for dc measurements only
Aging of permanent magnet and control springs introduces errors
Friction due to jewel-pivot suspension
Instrument cost is high

Errors in PMMC instruments:

- Errors due to friction:
- To reduce errors due to friction, the torque-to-weight ratio is made high
- Errors due to temperature: Basic PMMC is sensitive to temperature.
- The magnetic field strength decreases with increase in temperature
- The spring tension decreases with increase in temperature
- The coil resistance increases with increase in temperature
- Errors due to aging:
- Weakening of permanent magnet causes less deflection for a given current
- Weakening of control spring causes more deflection for a given current

8. With the help of circuits explain how PMMC can be used as
(i) an ammeter
(ii) multirange ammeter using Aryton shunt with necessary equations
(iii) voltmeter
(iv) multirange voltmeter with necessary equations

[^0]9. With required circuits and necessary computations, explain how a PMMC movement of range $0-25 \mathrm{~mA}$, with an internal resistance of 20Ω, can be
(i) extended to a range of $0-100 \mathrm{~mA}$; and
(ii) converted into an Voltmeter of range $0-10 \mathrm{~V}$.

S OI: (i) A PMMC (d'Arsonval movement) meter range can be extended by connecting a low resistance, called shunt, across the basic meter movement.

we need to calculate Resh to extend the range of $0-25 \mathrm{~mA}$ to $0-100 \mathrm{~mA} A$. Given: $\quad I_{m}=25 \mathrm{~mA}, R_{m}=20 \Omega$
(i) $I=I_{s h}+I_{m} \Rightarrow I_{s h}=I-I_{m}=100 \mathrm{~mA}-25 \mathrm{~mA}$

$$
I_{s h}=75 \mathrm{~mA}
$$

(b) Drop across shunt $=$ Dropacross meter

$$
\begin{aligned}
& \text { shunt }=\text { Drspaessssmeter } \\
& I_{s h} \cdot \text { Rh }=I_{m} R_{m} \Rightarrow R_{s h}=\frac{I_{m} R_{m}}{I_{s h}}
\end{aligned}
$$

$$
R_{\text {sh }}=\frac{25 \mathrm{~mA} \times 20 \Omega}{75 \mathrm{~mA}}=6.66 \Omega
$$

\therefore The Range of $0-25 \mathrm{~mA}$ meter can be extended to $0-100 \mathrm{~mA}$ meter by connecting a shunt resistance of 6.66Ω across Rm //
(ii) The PMMC meter can be converted into a voltmeter by connecting a high resistance, Called Multiplier, in series with the basic meter movement.

\rightarrow we need to calculate R_{S}.

$V=\operatorname{Im}\left(R_{s}+R_{m}\right)$
$10 \mathrm{~V}=25 \mathrm{~mA}\left(R_{s}+R_{m}\right) \Rightarrow R_{S}+R_{m}=400 \Omega \Rightarrow R_{S}=400 \Omega-20 \Omega$ $\Rightarrow R_{S}=380 \Omega$
The PMMC of -25 mA Can be converted into 0-10V Vottrneter by connecting a multiplier of 380Ω in Series 20° it the meter $/ /$.
10. Two resistors $R_{1}=140 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$ are connected in series across 12 V supply. A voltmeter on a 10 V range is connected to measure the voltage across the resistor ' R_{2}. Calculate
(i) actual value of voltage across R_{2}, (ii) measured voltage across R_{2} with voltmeter having sensitivity of $20 \mathrm{k} \Omega / \mathrm{V}$, (iii) measured voltage across R_{2} with voltmeter having sensitivity $200 \mathrm{k} \Omega / \mathrm{V}$, (iv) $\%$ error in both the above cases
What is your comment on the result with reference to sensitivity of the voltmeters used?
Solution:
(i) Actual voltage across R_{2}

$$
\begin{aligned}
V_{0} & =\frac{R_{2}}{R_{1}+R_{2}} \times V=\frac{100 \mathrm{~K}}{(100 \mathrm{k}+140 \mathrm{k})} \times 12 \mathrm{~V} \\
& =\frac{100}{240} \times 12=5 \mathrm{~V}
\end{aligned}
$$

Actual voltage across R_{2} is $V_{0}=5 \mathrm{~V}$

(ii) Measured voltage across R_{2}, when a voltmeter of $S=20 \mathrm{k} \Omega / \mathrm{V}$
\rightarrow The resistance offered by the viltrenetev comes in parallel with the R_{2}
\rightarrow Resistance offered by voltmeter $=R_{V}=$ Sensctirty \times Range

$$
R_{V}=20 \frac{\mathrm{k} \Omega}{\mathrm{~V}} \times 10 \mathrm{~V}=200 \mathrm{k} \Omega
$$

$\rightarrow \therefore$ The effective resistance
across points $A \& B$ is

$$
\begin{aligned}
& R_{\text {eff }}=\frac{R_{2} R_{V}}{R_{2}+R_{V}}=\frac{100 \mathrm{k} \Omega \times 200 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+200 \mathrm{k} \Omega} \\
& R_{\text {eff }}=66.666 \mathrm{k} \Omega
\end{aligned}
$$

\therefore The Reading that will be sham by the

voltmeter $=$ Drop across Reff

$$
\begin{aligned}
& \text { ster }=\text { Drop across Reff } \\
& V_{1}=\frac{\text { Reff }}{R_{1}+R_{\text {eff }}} \times 12 \mathrm{~V}=\frac{66.666 \mathrm{~K}}{(140+66-666) \mathrm{K}} \times 12 \mathrm{~V}=3.871 \mathrm{~V}
\end{aligned}
$$

This voltmeter 8 , suruphosed to read 5 V , scads 3.87 V
\therefore Error in voltmeter, reading $(e)=\frac{\text { measured-true }}{\text { True }} \times 100$.

$$
\begin{aligned}
& \text { (e) }=\frac{\text { True }}{} \\
& e=\frac{3.87-5}{5} \times 100=-22.58 \%
\end{aligned}
$$

(iii) Measured voltage across R_{2}, shew a voltmeter of $S=200 \mathrm{k} \Omega / \mathrm{V}$ $\left.\begin{aligned} & \text { is Connected: } \\ & R_{V}=S \times R \text { range }=200 \mathrm{k} \mathrm{\Omega} \times 10 \mathrm{~V}\end{aligned} \quad \right\rvert\, \begin{aligned} & R_{\text {eff }}=R_{2} \| R \mathrm{~V} \\ & \end{aligned}$
$R_{V}=2000 \mathrm{k} \Omega$

The drop across $R_{\text {eff }}=\frac{R_{\text {eff }}}{R_{1}+R_{\text {eff }}} \times 12 \mathrm{~V}$

$$
V_{2}=\frac{95.238 k}{(140+95.238) k} \times 12 \mathrm{~V}=4.858 \mathrm{~V} \quad\left[12 \mathrm{~V} \quad A \sum_{0}^{0} R_{\text {eff }}^{0}=95.238 \mathrm{k} \Omega\right.
$$

\therefore This voltmeter, stich is supposed to reed 5 V , reads 4.858 V .
Hence error in voltrreter reading $(e)=\frac{\text { measnred-True reading }}{\text { True reading }} \times 100 \%$

$$
e=\frac{4.858-5}{5} \times 100=-2.84 \%
$$

Comment:

* voltmeter silt $S=20 \mathrm{k} \Omega / \mathrm{v}$, reads voltage across R_{2} with -22.58% error * voltrieter sits $S=200 \mathrm{k} \Omega / \mathrm{V}$, reads voltage across R_{2} with -2.84% error
\rightarrow Higher the meter sensitivity ($k \Omega / v$), more accurate is the meter reading.
\rightarrow Loading effect is caused by meters with low sensitivity I/.

Faculty: Dr. K. Ashoka Redly, Room \#: BI-208

[^0]: (refer to class notes....)
 Those who missed regular classes are advised to take notes from their friends who attended.

