KAKATIYA INSTITUTE OF TECHNOLOGY AND SCIENCE: WARANGAL-15 Assignment – VI

Class	:	II/IV B.Tech II-Semester
Subject	:	EC 225 - Signals & Systems (Common for ECE, EIE and EEE)
Assignment to be submitted on : 17.02.2014		

- 1) Evaluate the Fourier Transforms of the following Signals using properties.
 - i) $e^{at}u(-t)$
 - ii) $te^{-3t}u(t)$
 - iii) $\cos \omega_0 t u(t)$
 - iv) $e^{-2t}u(t-1)$
 - v) Sin (8t+0.1 π)
- 2) Find the inverse Fourier Transform of following Signals

i)
$$X(\omega) = \frac{j\omega}{(3+j\omega)^2}$$
 ii) $X(\omega) = e^{-j\omega}$

- 3) Using Fourier Transform find the convolution of the signals i) $x_1(t) = e^{-2t}u(t)$ and $x_2(t) = e^{-3t}u(t)$
- 4) Consider a causal LTI system with impulse response $h(t) = e^{-4t} u(t)$. Find the output of the system for an input $x(t) = 3 \cdot e^{-t} u(t)$.
- 5) The input and output of a causal LTI system are described by the differential equation $\frac{d^2 y(t)}{dt^2} + \frac{3 dy(t)}{dt} + 2y(t) = x(t)$
 - i) Find the frequency response of the system.
 - ii) Find the impulse response of the system.
 - iii) What is the response of the system if $x(t) = t \cdot e^{-t} u(t)$.