KAKATIYA INSTITUTE OF TECHNOLOGY AND SCIENCE: WARANGAL-15

Assignment - II

Class	:	II/IV B.Tech II-Semester		
Subject	:	EC 225 - Signals & Systems (Common for ECE, EIE and EEE)		
Assignment to be submitted on : 09.12.13				

Problem 1

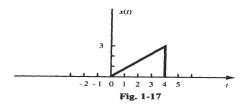
Determine if the following systems are time-invariant, linear, causal, and/or memory less?

S.No.	Problem	Answer
1.	dy/dt + 6y(t) = 4x(t)	Linear, time invariant ,causal, memory
2.	dy/dt +4ty(t)=2x(t)	Linear, time variant ,causal, memory
3.	$dy/dt + y^2(t) = x(t)$	Non Linear, time invariant ,causal, memory
4.	y(t) = dx/dt + x(t)	Linear, time invariant ,causal, memory
5.	$\frac{d^2y}{dt^2+10} \frac{dy}{dt} + 4 y(t) = \frac{dx}{dt} + 4 x(t)$	Linear, time invariant ,causal, memory
6.	$dy/dt + \sin(t)y(t) = 4x(t)$	Linear, time variant ,causal, memory

Problem 2

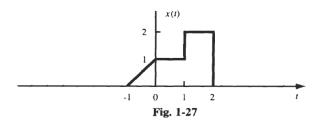
The response of an LTI system to a step input, x(t) = u(t) is $y(t) = (1-e^{-2t}) u(t)$. What is the response to an input of x(t) = 4u(t)-4u(t-1)?

Problem 3


Consider the continuous time signal x (t) = 3-t $0 \le t \le 3$ 0 otherwise

otherwise sketch and label carefully x(3-2t)

Problem 4


A continuous-time signal x(t) is shown in Fig. 1-17. Sketch and label each of the following signals.

(a)
$$x(t-2)$$
; (b) $x(2t)$; (c) $x(t/2)$; (d) $x(-t)$

A continuous-time signal x(t) is shown in Fig. 1-27. Sketch and label each of the following signals.

(a)
$$x(t)u(1-t)$$
; (b) $x(t)[u(t)-u(t-1)]$; (c) $x(t)\delta(t-\frac{3}{2})$

Problem 6

Evaluate the following integrals:

(a)
$$\int_{-1}^{1} (3t^2 + 1)\delta(t) dt$$

(b)
$$\int_{1}^{2} (3t^2 + 1)\delta(t) dt$$

(c)
$$\int_{-\infty}^{\infty} (t^2 + \cos \pi t) \, \delta(t-1) \, dt$$

$$(d) \quad \int_{-\infty}^{\infty} e^{-t} \delta(2t-2) \, dt$$

Problem 7

Evaluate y(t) = x(t) * h(t), where x(t) and h(t) are shown in Fig. 2-6, (a) by an analytical technique, and (b) by a graphical method.



Fig. 2-6