KAKATIYA INSTITUTE OF TECHNOLOGY AND SCIENCE: WARANGAL-15 DEPARTMENT OF ELECTRONICS & INSTRUMENTATION ENGINEERING

TEACHING SCHEDULE

EC 225 SIGNALS & SYSTEMS II SEMESTER, II/IV B.TECH

(Common for ECE, EIE and EEE)

Course	:	EC 225 - Signals & Systems , II/IV B.Tech., II-Semester (EIE)
Name of the faculty	:	K. Ashoka Reddy Professor, Dept of E&I Engg
Email:	:	kar@eie.kitsw.ac.in

Text books:

- 1. Simon & Haykins, Signals & Systems, John Wiley & Sons
- 2. B.P.Lathi, Signals & Systems and Communications, BSP
- 3. Proakis, Digital Signal Processing: Principles, Algorithms and Applications, PHI
- 4. P.Z. Peebles, Probability, Random Variables & Random Signal Principles, TMH
- 5. Oppenheim, Willsky & Young; Signals and Systems PHI, EEE, New Delhi.

Software: Matlab Student Version Release 2011a, Mathworks, Inc. The Matlab Student

Version and toolboxes may be purchased through the Mathworks website at

http://www.mathworks.com/.

Webpage: www.kitsw.ac.in/departments/EI/ashok/classes/EC225.html

Email List: eie2013@kitsw.ac.in; ece2013@kitsw.ac.in; eee2013@kitsw.ac.in

Online Material: A significant amount of course-related material may be found at the class website. It is the responsibility of the student to be cognizant of this information; thus, the student should visit the website frequently. Additionally, important class announcements will be sent by email to the official email lists mentioned above. This list sends mail to Institute Official Student Email addresses. By policy, it is the responsibility of the student to read Institute Official Student Email frequently. The students are encouraged to use this list for class-related questions and discussions.

Course Objective:

The objectives of this course are

- to develop good understanding about signals, systems and their classification;
- to provide with necessary tools and techniques to analyze electrical networks and systems
- to develop expertise in time-domain and frequency domain approaches to the analysis of continuous and discrete systems;
- to introduce to the basics of probability, random variables and the various distribution and density functions; and
- to develop students' ability to apply modern simulation software to system

Course Outcome:

- o Students will be able to represent & classify signals, Systems & identify LTI systems
- Students will be able to derive Fourier series for continuous time signals
- o Students will be able to find Fourier transform for different signals
- Students will be able to analyze the Continuous Time systems by performing Convolution
- o Students will be able to understand Discrete-time systems and LTI systems.
- o Students will be able to analyze DT systems & their realization using Z-transforms
- o Students will be able to understand probability concepts
- Students will be able to find statistical properties (mean, variance, auto correlation function) of random variables

TEACHING SCHEDULE

Date of Commencement of Class work: 15.12.2014

Assignment Portion	Topics to be covered	References	Assignment	
			Date of	Date for
	UNIT- I		posting	Submission
Assignment	Introduction to Signals, Signal representation	Simon &		
1		Haykins		
	Classification of CT signals, Problems on signal	Simon &		
	classification	Haykins		
	Singularity functions	B.P.Lathi		
	Signal representation using Singularity functions	do	15.12.14	29.12.14
	Unit impulse function properties, Signal	do	15.12.14	29.12.14
	representation using impulse function			
	classification of Systems	Simon &		
		Haykins		
	LTI system, Convolution integral & its	do		
	significance			
	Graphical convolution of some functions	do		
Assignment	Analytical method of convolution	do		
2				
	Convolution using impulses	do		
	Signal approximation: Fourier series	Oppenheim		
		Willsky &		
		Young	24.12.14	05.01.15
	Trigonometric FS representation	do		
	Trigonometric FS representation of some	do		
	functions			
	Exponential FS representation of CT signals	do		
	Relation between two series, some examples	do		
	Review Class/Contents beyond the syllabus			

Outcome:

- Students will be able to represent and classify signals and Systems.
- Students will be able to find Fourier series for continuous time signals.

Assignment	Topics to be covered	References	Assignment	
Assignment Portion	UNIT- II		Date of posting	Date for Submission
Assignment	Fourier spectrum, Fourier transform, Dirchlet conditions	Simon & Haykins	05.01.15	19.01.15
3	Properties of Fourier transforms	do		
	Evaluation of FT of some functions using properties	do		
	FT of constant, signum function, unit step, exponential	do		
Assignment	FT of periodic functions: cosine, sine, periodic pulse train	do	12.01.15	22.01.15
4	FT of impulse train, Inverse FTs	do		
	Energy Spectral density, parseval's theorem for energy signals	B.P.Lathi		
	Power Spectral density, parseval's theorem for power signals	do		
	Hilbert transform and its properties	do		
	LTI Systems, Impulse response of LTI systems	do		
	Transfer function of LTI systems	do		
	Review Class/Contents beyond the syllabus			

Outcome:

- Students will be able to find Fourier transforms and Hilbert Transforms for different signals.
- Students will be able to analyze the Continuous Time systems by performing Convolution
- Students will be able to find the response of the system by using Convolution

I-MID EXAMS: from 27.01.2015 to 02.02.2015

Assignment Portion	Topics to be covered	References	Assignment		
	Topics to be covered		Date of	Date for	
	UNIT- III		posting	Submis sion	
Assignment 5	Introduction to Discrete Time Signals, representation of DT signals	Oppenheim, Willsky & Young	02.02.15	16.02.15	
	Classification of DT systems	do			
	LTI systems ,Impulse response and convolution sum, properties of convolution	do			
	Convolution of some DT signals (i) Graphical convolution (ii) Matric and Tabular convolution	do			
	Introduction to Z-Transforms, ROC	do			
	Properties of Z-Transforms	do			
	Evaluation of Z-Transforms of some DT signals	do			
	Inverse Z-Transforms: Partial fractions method, problems	do			
	Inverse Z-Transforms: Residues method, problems	do			
Assignment 6	Inverse Z-Transforms: Long division method, problems	do	12.02.15	23.02.15	
	Evaluation of IZT of some transforms, problems	do			
	Structural realization of DT systems	do			
	Direct Form-I Structural realization	do			
	Direct Form-II Structural realization	do			
	Cascade and Parallel decomposition forms	do			
	Review Class/Contents beyond the syllabus				

Outcome:

- Students will be able to understand Discrete-time systems and LTI systems.
- Students will be able to analyze DT systems using Z-transforms
- Students will be able to realize the DT systems

Assignment Portion	Topics to be covered		Assignment	
	UNIT- IV	References	Date of posting	Date for Submission
Assignment 7	Introduction to probability, distribution and density functions	P.Z.Peebl es	20.02.15	02.03.15
	Probability distribution and density functions	do		
	Relation between probability and density function, Joint CDF, variance	do		
	Probability density functions: Raleigh's normal, Gaussian			
Assignment 8	Statistical averages of random variables	do	27.03.15	12.03.15
	Mean and variance of the sum of the random variables	do		
	Tchebycheff's inequality, error function	do		
	Correlation, Central limit theorem	do		
	Review Class/Contents beyond the syllabus			

Outcome:

- Students will be able to understand probability concepts.
- Students will be able to find statistical parameters (mean, variance, auto correlation function) of random variables.

LAST DAY OF INSTRUCTION: 15. 03. 2015, II-MID EXAMS: from 17. 03. 2015 to 24. 03. 2015

Expectations:

The teacher expects all the students to

- Attend each class!
- Read the recommended Text Book!
- Work all the Homework!

Attendance:

Attendance is vital in the academic success of a student

• 75% attendance is mandatory

Homework/Assignment:

- Homework/Assignments will be posted according to scheduled.
- No late submission of assignments will be accepted *for any reason*.

Exams & Grading:

There will be two mid-term exams and one final exam

Mid-term 1 : 50 Marks, 2 Hr Duration Best of two

Mid-term 2 : 50 Marks, 2 Hr Duration Final Examination : 100 Marks, 3 Hr Duration

- Students are advised to be present for both mid-term exams.
- After mid-term exam, the student should go through the evaluated scripts and
 may wish to dispute the exam score: This must be made within one week from the
 date of the exam.

Examination malpractice is illegal:

For additional information please visit: www.kitsw.ac.in/examinations/rules