KAKATIYA INSTITUTE OF TECHNOLOGY AND SCIENCE: WARANGAL-15

Assignment - I

0			
Class	:	II/IV B.Tech II-Semester	
Subject	:	EC 225 - Signals & Systems (Common for ECE, EIE and EEE)	
Assignment to be submitted on : 29.12.2014			

I). Are the following periodic? If so, give the period.

S.No.	Problem	Answer
1.	$x(t) = 4 \cos(5 \pi t - \pi / 4)$	T=2/5 Sec.
2.	$x(t) = 4u(t) + 2\sin(3t)$	Not Periodic
3.	$x(t) = 4\cos(3t + \pi/4) + u(t)$	Not Periodic
4.	$x(t) = 4\cos(3\pi t + \pi/4) + 2\cos(4\pi t)$	Periodic $T_1/T_2=4/3$
5.	$x(t) = 4\cos(3\pi t + \pi/2) + 2\cos(8\pi t + \pi/2)$	Periodic $T_1/T_2=8/3$
6.	$x(t) = 2\cos(3\pi t + \pi/2) + 4\cos(10t - \pi/2)$	Not Periodic
7.	$x(t) = \cos(4t) + 2\sin(8t)$	Periodic $T_1/T_2=2$
8.	$\mathbf{x}(\mathbf{t}) = \mathbf{e}_{- \mathbf{t} }$	Not Periodic

II). Find the even and odd parts of the following signals.

S.No.	Problem	Answer
1.	$x(t) = \cos(t) + \sin(t) + \cos(t)\sin(t)$	Even: cos(t)
		Odd : $sin(t)+cos(t)sin(t)$
2.	$x(t) = \sin(t) + 2\sin(t) + 2\sin^2(t)\cos(t)$	Even: $2\sin^2(t)\cos(t)$
		Odd : $sin(t) + 2sin(t)$
3.	$x(t) = \sin 2t + \cos 4t + 1$	Even: cos4t+1
		Odd: sin2t
4.	$x(t) = (1+t^3)\cos^3(10t)$	Even: cos ³ (10t)
		Odd: $t^3 \cos^3(10t)$

III). Categorize each of the following signals as an energy signal or power signal, and find the energy or power of the signal.

S.No.	Problem	Answer
1.	$x(t) = \cos(2\pi t)u(t)u(2-t)$	E = 2J
2.	$x(t) = 5\cos(\pi t) + \sin(5\pi t) -\infty < t < \infty$	P = 13 w
3.	$x(t) = e^{jt\alpha} \cos(\omega t)$	P = 0.5 w
4.	$x(t) = (1 + e^{-5t})u(t)$	P = 0.5 w

IV). Sketch the following signals.

1.	x(t) = u(t+1)-2u(t)+u(t-1)
2.	x(t) = u(t-2) r(t-1)
3.	$\mathbf{x}(t) = -\mathbf{u}(t) + \mathbf{u}(2+t)$
4.	x(t) = r(t+2)-r(t+1)-r(t-1)+r(t-2)
5.	x(t) = 2u(t) - 1

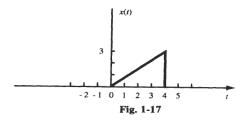
Problem 5

Determine if the following systems are time-invariant, linear, causal, and/or memory less?

	S.No.	Problem	Answer
	1.	dy/dt + 6y(t) = 4x(t)	Linear, time invariant ,causal, memory
Γ	2.	dy/dt + 4t y(t) = 2x(t)	Linear, time variant ,causal, memory
Γ	3.	y(t) = dx/dt + x(t)	Linear, time invariant ,causal, memory
Γ	4.	dy/dt + sin(t)y(t) = 4x(t)	Linear, time variant ,causal, memory

Problem 6

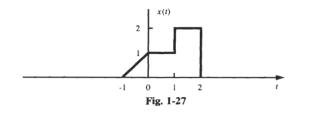
The response of an LTI system to a step input, x (t) = u (t) is y (t) = $(1-e^{-2t})$ u (t). What is the response to an input of x(t) = 4u(t)-4u(t-1)?


Problem 7

Consider the continuous time signal x (t) = 3-t $0 \le t \le 3$ 0 otherwise sketch and label carefully x(3-2t)

Problem 8

A continuous-time signal x(t) is shown in Fig. 1-17. Sketch and label each of the following signals.


(a) x(t-2); (b) x(2t); (c) x(t/2); (d) x(-t)

Problem 9

A continuous-time signal x(t) is shown in Fig. 1-27. Sketch and label each of the following signals.

(a) x(t)u(1-t); (b) x(t)[u(t) - u(t-1)]; (c) $x(t)\delta(t-\frac{3}{2})$

Problem 10

Evaluate the following integrals:

(a)
$$\int_{-1}^{1} (3t^2 + 1)\delta(t) dt$$

(b) $\int_{1}^{2} (3t^2 + 1)\delta(t) dt$
(c) $\int_{-\infty}^{\infty} (t^2 + \cos \pi t) \delta(t - 1) dt$
(d) $\int_{-\infty}^{\infty} e^{-t}\delta(2t - 2) dt$

Problem 11

Evaluate y(t) = x(t) * h(t), where x(t) and h(t) are shown in Fig. 2-6, (a) by an analytical technique, and (b) by a graphical method.

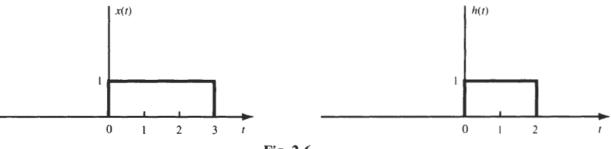


Fig. 2-6