KAKATIYA INSTITUTE OF TECHNOLOGY AND SCIENCE: WARANGAL-15 DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING <u>Academic Year 2013-14</u>

EC 225 SIGNALS & SYSTEMS II SEMESTER, II/IV B.TECH (Common for ECE, EIE and EEE)

Course	:	EC 225 - Signals & Systems , II/IV B.Tech., II-Semester
Name of the faculty	:	Dr. K. Ashoka Reddy Professor of E&I Engg, Research Lab, Dept. of E&I Engg, First Floor, Block-I
Email:	:	kar@eie.kitsw.ac.in

Text/Software:

Text books:

- 1. Simon & Haykins, *Signals & Systems*, John Wiley & Sons
- 2. B.P.Lathi, Signals & Systems and Communications, BSP
- 3. Proakis, Digital Signal Processing: Principles, Algorithms and Applications, PHI
- 4. P.Z. Peebles, Probability, Random Variables & Random Signal Principles, TMH

Software: Matlab Student Version Release 2011a, Mathworks, Inc. The Matlab Student Version and toolboxes may be purchased through the Mathworks website at http://www.mathworks.com/.

Webpage: <u>http://kitsw.ac.in/departments/EI/ashok/classes/EC225.html</u>

Email List: <u>eie2012@kitsw.ac.in;</u> <u>ece2012@kitsw.ac.in;</u> <u>eee2012@kitsw.ac.in</u>

Online Material: A significant amount of course-related material may be found at the class website. It is the responsibility of the student to be cognizant of this information; thus, the student should visit the website frequently. Additionally, important class announcements will be sent by email to the official email lists mentioned above. This list sends mail to **Institute Official Student Email addresses**. By policy, it is the responsibility of the student to read **Institute Official Student Email Student Email** frequently. The students are encouraged to use this list for class-related questions and discussions.

Course Objective:

The objectives of this course are

- to develop good understanding about signals, systems and their classification;
- to provide with necessary tools and techniques to analyze electrical networks and systems
- to develop expertise in time-domain and frequency domain approaches to the analysis of continuous and discrete systems;
- to introduce to the basics of probability, random variables and the various distribution and density functions; and
- to develop students' ability to apply modern simulation software to system

Course Outcome:

- o Students will be able to represent & classify signals, Systems & identify LTI systems
- o Students will be able to derive Fourier series for continuous time signals
- Students will be able to find Fourier transform for different signals
- Students will be able to analyze the Continuous Time systems by performing Convolution
- Students will be able to understand Discrete-time systems and LTI systems.
- o Students will be able to analyze DT systems & their realization using Z-transforms
- Students will be able to understand probability concepts
- Students will be able to find statistical properties (mean, variance, auto correlation function) of random variables

week -1 (25.11.13 to 30.11.13)Introduction to Signals, Signal representation (2assification of CT signals, Problems on signal classificationSimon & HaykinsSimon & B.P.Lathi Signal representation using Singularity functionsSimon & Haykins25.11.201302.012Singularity functionsSingularity functionsB.P.Lathi or do25.11.201302.012Week -2 (2.12.13 to 7.12.13)classification of SystemsSimon & Haykins25.11.201302.012Week-3 (9.12.12 to 14.12.13)Classification of SystemsSimon & Haykins02.12.1309.012Week-3 (9.12.12 to 14.12.13)Convolution of some functions do Convolution using impulses do Convolution integral & its signal approximation: Fourier series do Coppenhei m, Willsky09.12.1309.012	Week & Date	UNIT- I (Topics to be covered)	References	Assignment will be posted on	Due Date for Assignment Submission
(25.11.13 to 30.11.13)Haykins Classification of CT signals, Problems on signal classificationHaykins Simon & Haykins25.11.201302.012Singularity functionsSingularity functions do002.01202.012Unit impulse function properties, Signal representation using impulse function do002.01202.012week -2 (2.12.13 to 7.12.13)classification of SystemsSimon & Haykins do002.012Week-3 (9.12.12 to 14.12.13)Convolution of some functions do02.12.1309.012Week-3 (9.12.12 to 14.12.13)Convolution using impulses do02.12.1309.01214.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12	week -1	Introduction to Signals, Signal representation	Simon &		
30.11.13)Classification of CT signals, Problems on signal classificationSimon & Haykins B.P.LathiSimon & Haykins25.11.201302.012Signal representation using Singularity functions do00<	(25.11.13 to		Haykins	-	
classificationHaykins25.11.201302.012Singularity functionsSignal representation using Singularity functions do0Unit impulse function properties, Signal representation using impulse function do0week -2 (2.12.13 to 7.12.13)classification of SystemsSimon & Haykins do0SignificanceSignificance do02.12.1309.012Week-3 (9.12.12 to 14.12.13)Convolution using impulses do02.12.1309.01214.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12	30.11.13)	Classification of CT signals, Problems on signal	Simon &		
Singularity functionsB.P.LathiDefinitionsSignal representation using Singularity functions doUnit impulse function properties, Signal representation using impulse function doweek -2 (2.12.13 to 7.12.13)classification of SystemsSimon & HaykinsKeek -2 (2.12.13 to 7.12.13)LTI system, Convolution integral & its significance doMeek-3 (9.12.12 to 14.12.13)Convolution using impulses doWeek-3 (9.12.12 to 14.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1309.12.1316.12		classification	Haykins	25 11 2013	02 012 13
Signal representation using Singularity functions doUnit impulse function properties, representation using impulse functionSignal doweek -2 (2.12.13 to 7.12.13)classification of SystemsSimon & Haykinsclassification of SystemsSimon & Haykins02.12.13of representation using impulse function dographical convolution integral & its significance doGraphical convolution of some functions doMeek-3 (9.12.12 to 14.12.13)Convolution using impulses doWeek-3 (9.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12		Singularity functions	B.P.Lathi	20.11.2010	02.012.10
Unit impulse function properties, representation using impulse functionSignal do doweek -2 (2.12.13 to 7.12.13)classification of SystemsSimon & Haykins02.12.13ignificance do02.12.1309.012Graphical convolution of some functions do02.12.1309.012Week-3 (9.12.12 to 14.12.13)Signal approximation: Fourier series do09.12.1316.12		Signal representation using Singularity functions	do	-	
representation using impulse functionSimon & Haykinsweek -2 (2.12.13 to 7.12.13)classification of SystemsSimon & Haykins(2.12.13 to 7.12.13)LTI system, Convolution integral & its significance doGraphical convolution of some functions doGraphical convolution of some functions doMeek-3 (9.12.12 to 14.12.13)Convolution using impulses do09.12.13Signal approximation: Fourier seriesOppenhei m, Willsky09.12.13		Unit impulse function properties, Signal	do		
week -2 (2.12.13 to 7.12.13)classification of SystemsSimon & HaykinsLTI system, Convolution integral & its significance do02.12.1309.012Graphical convolution of some functions do02.12.1309.012Week-3 (9.12.12 to 14.12.13)Convolution using impulses do16.12		representation using impulse function			
week -2 (2.12.13 to 7.12.13)Classification of systemsHaykins 109.012Week-3 (9.12.12 to 14.12.13)LTI system, Convolution integral & its significance do -02.12.1309.012Week-3 (9.12.12 to 14.12.13)Convolution using impulses signal approximation: Fourier series do -09.01209.012Week-3 (9.12.12 to 14.12.13)09.01216.12		classification of Systems	Simon &		
(2.12.13 to 7.12.13)LTI system, Convolution integral & its significance do02.12.1309.0127.12.13)Graphical convolution of some functions do02.12.1309.012Week-3Analytical method of convolution do02.12.1309.012Week-3Convolution using impulses do02.12.1309.01216.12(9.12.12 to 14.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12	week -2		Haykins	02.12.13	09.012.13
7.12.13)significance doGraphical convolution of some functions doMeek-3Convolution using impulses do(9.12.12 to 14.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12	(2.12.13 to	LTI system, Convolution integral & its	do		
Graphical convolution of some functions doAnalytical method of convolution doWeek-3Convolution using impulses do(9.12.12 to 14.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12	7.12.13)	significance			
Analytical method of convolution doWeek-3Convolution using impulses do(9.12.12 to 14.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12		Graphical convolution of some functions	do		
Week-3 (9.12.12 to 14.12.13)Convolution using impulses doOppenhei m, Willsky09.12.1316.12		Analytical method of convolution	do		
(9.12.12 to 14.12.13)Signal approximation: Fourier seriesOppenhei m, Willsky09.12.1316.12	Week-3	Convolution using impulses	do		
14.12.13) m, Willsky 05.12.15 10.12	(9.12.12 to	Signal approximation: Fourier series	Oppenhei	09.12.13	16.12.13
	14.12.13)		m, Willsky		
& Young			& Young		
Trigonometric FS representation do		Trigonometric FS representation	do		
Trigonometric FS representation of some do		Trigonometric FS representation of some	do		
week - 4 functions	week - 4	functions			
(16.12.13 to Exponential FS representation of CT signals do 16.12.13 23.12	(16.12.13 to	Exponential FS representation of CT signals	do	16.12.13	23.12.13
21.12.13) Relation between two series, some examples do	21.12.13)	Relation between two series, some examples	do		
Review Class/Contents beyond the syllabus		Review Class/Contents beyond the syllabus]	

SYLLABUS - TEACHING SCHEDULE (2013-2014)

Outcome:

- Students will be able to represent and classify signals and Systems.
- Students will be able to derive Fourier series for continuous time signals.

Week & Date	UNIT- II (Topics to be covered)	References	Assignm ent will be posted on	Due Date for Assignm ent
	Fourier spectrum, Fourier transform, Dirchlet	Simon &	23.12.13	30.12.13
5week	conditions	Haykins		
(23.12.13to	Properties of Fourier transforms	do		
28.12.13)	Evaluation of FT of some functions using properties	do		
	FT of constant, signum function, unit step,	do		
	exponential			
	FT of periodic functions: cosine, sine, periodic pulse	do	30.12.13	06.1.14
6 week (30.12.13to 04.01.14)	train			
	FT of impulse train, Inverse FTs	do		
	Energy Spectral density, parseval's theorem for	B.P.Lathi		
	energy signals			
	Power Spectral density, parseval's theorem for power	do		
	signals			
7 week (06.01.14 to	Hilbert transform and its properties	do	06.1.14	10.1.14
	LTI Systems, Impulse response of LTI systems	do		
	Transfer function of LTI systems	do		
10.1.14)	Review Class/Contents beyond the syllabus			

Outcome:

- •
- Students will be able to find Fourier transform for different signals. Students will be able to analyze the Continuous Time systems by performing • Convolution

SHORT-TERM VACATION (SANKRANTI): 11.01.2014 TO 18.01.2014 I-MID EXAM: 20.01.2014 TO 25.01.2014

Week & Date	UNIT- III (Topics to be covered)	References	Assignment will be posted on	Due Date for Assignment Submission
8 week (27.1.14 to	Introduction to DT signals, representation of DT signals	Oppenheim, Willsky & Young	27.01.2014	03.02.2014
1.2.14)	Classification of DT systems	do		
, ,	LTI systems ,Impulse response and convolution sum, properties of convolution	do		
9 week	Convolution of some DT signals (i) Graphical convolution (ii) Matric and Tabular convolution	do	03.2.14	10.2.14
(03.02.14to 08.02.14)	Introduction to Z-Transforms, ROC	do		
	Properties of Z-Transforms	do		
	Evaluation of Z-Transforms of some DT signals	do		
10 week	Inverse Z-Transforms: Partial fractions method, problems	do	10.2.14	17.2.14
(10.02.14to 15.2.14)	Inverse Z-Transforms: Residues method, problems	do		
	Inverse Z-Transforms: Long division method, problems	do		
	Evaluation of IZT of some transforms, problems	do		

	Structural realization of DT systems	do	17.2.14	24.3.14
11 week	Direct Form-I Structural realization	do		
(17.02.14to	Direct Form-II Structural realization	do		
22.02.14)	Cascade and Parallel decomposition forms	do		
	Review Class/Contents beyond the syllabus			
Outcome:				

- Students will be able to understand Discrete-time systems and LTI systems.
- Students will be able to analyze DT systems & their realization using Z-transforms

Week & Date	UNIT- IV (Topics to be covered)	References	Assignment will be posted on	Due Date for Assignment Submission
12week	Introduction to probability, distribution and density	P.Z.Peebl		
(24.2.14 to	functions	es	24.3.14	03.3.14
1.3.14)	Probability distribution and density functions	do		
13 week (03.03.14	Relation between probability and density function, Joint CDF, variance do		02 2 14	10.2.14
to 08.03.14)	Probability density functions: Raleigh's normal, Gaussian	do	03.3.14	10.3.14
	Statistical averages of random variables	do		
14 week (10.03.14 to 15.3.14)	Mean and variance of the sum of the random variables	do	10.00.0014	15 00 1 4
	Tchebycheff's inequality, error function	do	10.03.2014	15.03.14
	Correlation, Central limit theorem	do		
	Review Class/Contents beyond the syllabus			

Outcome:

- Students will be able to understand probability concepts.
- Students will be able to find statistical properties (mean, variance, auto correlation function) of random variables.

LAST DAY OF INSTRUCTION: 15.03.2014

II-MID EXAMs: 17. 03. 2014 TO 22. 03. 2014

Expectations: The teacher expects all the students to

- Attend each class !
- Read the recommended Text Book !
- Work all the Homework !

Attendance: Attendance is vital in the academic success of a student

- Class roll will be taken in every class
- If an absence from class is unavoidable due to some situation beyond a student's control, the student should inform the teacher *before* a class is missed.
- 75% attendance is mandatory

Homework/Assignment:

- Homework will be **assigned each Monday** and will be **due the following Monday**, unless otherwise specified.
- Homework must be turned in during lunch time on the day it is due.
- No late homeworks will be accepted *for any reason*.
- Homework assignments will include some programming in MATLAB.

Exams & Grading:

There will be two mid-term exams and Final University exam **Grading**

Mid-term 1	:	50	Marks, 2 Hr Exam	
Mid-term 2	:	50	Marks, 2 Hr Exam	Best of two
Final Examination	:	10	0 Marks	

- Students are advised to be present for both mid-term exams.
- As there are no make-up exams, students are advised to take First mid -term exam without fail as student may miss the second mid-term exam due to some situation beyond the student's control (such as a serious illness,, etc.) which is unexpected, unavoidable.
- After mid-term exam , the student should go through the evaluated scripts and may wish to dispute the exam score: This must be made within *one week* following the date of the exam
